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Abstmct. We present simulations supponing the conjecture that properly defined exterior 
perimeters of i~ criiicai percoiaiion ciusien have the same iraciai dimension, D =t, as 
self-avoiding random walks. In addition, wc discuss possible generalizations. 

Percolation and self-avoiding random walks are the two simplest and most important 
geometric models showing critical behaviour. Moreover, they are hoth related to thermal 
theories, both being equivalent to unphysical limits of spin models. Thus any new 
relationship between them would be very important. In this letter we conjecture that 
a very natural close connection between them exists indeed in two dimensions. 

What we claim is essentially that perimeters of critical percolation clusters in two 
dimensions are random self-avoiding loops. To become non-trivial and correct, this 
statement needs several qualifying comments. 

First of all, it is trivial that any perimeters are self-avoiding loops, and since 
percolation clusters are random objects, the above statement might seem altogether 
trivial. This is not the case since by 'random self-avoiding loops' we have a very specific 
measure on the space of all loops in mind. In this measure, all possible loops of a 
given fixed length N and not intersecting themselves have the same weight. This is 
the immediate generalization of the self-avoiding walk (SAW) measure, and the loops 
have the same scaling behaviour as the open walks: the average gyromagnetic radius 
of a N-step loop scales as N", with U=: in two  dimensions [l]. Further scaling laws 
follow if we consider also loops with arbitrary N, and assume that every loop has still 
the same weight. Then, the number of loops scales as cN -pNN-' with y = t  [l], 
where the non-universal constant p depends on the specific lattice. 

Secondly, there are several possible definitions of the perimeter of a percolation 
cluster. The first problem is whether we count also the perimeters of internal holes, or 
oniy tne exterior perimeter. w e  mean the iatter. Tne best known definition of an exterior 
perimeter for percolation clusters is what is usually called its hull. This is defined as 
the set of all points which belong themselves to the cluster, but which are next to 
plaquettes belonging to the connected surrounding cluster on the dual lattice [2] (see 
also below). It is known that its dimension is exactly t [3-81, larger than that of  SAW^. 

It was, however, observed by Grossman and Aharony [9] that a seemingly slight 

meter, has a much smaller dimension close to 4 .  More precisely they measured 
D = 1.34+0.02. Based on much more precise simulations we conjecture that D indeed 
is exactly ;. The same conjecture had already been made in [7,9]. Notice however 
that this conjecture is incompatible with unpublished measurements by Meakin and 
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Family (quoted in [7,9]) which are supposed to show D = 1.343 f 0.002. Since we have 
no detailed information on these measurements, and since our own measurements 
described below have lower statistical errors, we will disregard these measurements in 
the following. 

In [9], the accessible perimeter was only defined for site percolation in two 
dimensions, and was motivated by chemical considerations. Indeed, several definitions 
were given which all took into account the inaccessibility of narrow fjords in the cluster 
to objects as large or larger than the lattice constant a. It was found that the accessible 
perimeter dimension for site percolation on the square lattice decreased abruptly from 
$ t o  

We found it more useful to  use definitions which use the concept of the dual lattice. 
The dual lattice is obtained by exchanging sites with plaquettes. In this way, bond 
percolation on the square lattice and site percolation on the triangular lattice become 
self dual, while triangular lattice bond percolation becomes dual to honeycomb lattice 
bond percolation [lo]. For these lattices, the thresholds are known exactly. On other 
lattices (like, e.g., site percolation on the square lattice studied mainly in [9]) the 
uncertainty of pc  introduces systematic errors in any simulation. 

If we consider a finite cluster, then it is surrounded by one connected cluster on 
the dual lattice. This cluster will in general have some bond-dangling groups extending 
into the interior. These are groups of sites connected with the bulk only via paths 
passing through a single bond, see figure 1. This observation suggests immediately the 
first definition. The accessible perimeter Pea) of a cluster % is defined as those sites 
on the dual lattice which are in contact with %, after removing all bond-dangling groups. 

when these objects had diameter >a. 

Figure 1. A finite bond percolation cluster on the square lattice (bold lines). The adjacent 
pan of the surrounding cluster an the dual lattice is indicated by fine lines. It has a 
site-dangling group at b and bond-dangling groups at a 

A very similar definition is obtained by removing in addition all site-dangling 
groups, i.e. groups connected with the bulk only via paths passing through a single 
site (see figure 1) .  We call this the accessible perimeter Pcb) .  

Notice that cutting off dangling groups means essentially that we consider only the 
backbone of the dual cluster. Thus, the accessible perimeter dimension of the original 
cluster is just the dimension of the backbone perimeter of the dual cluster. Simulations 
of the latter are given in [l l] ,  with the result D = 1.344*0.022. This is compatible with 
our more precise value quoted below. 

Alternative definitions of accessible perimeters are suggested by the observation 
[3,4,6,8,  12, 131 that the hulls of percolation clusters can be obtained by special 
random walks with memory. These are easiest for self-dual cases [4,13]. For bond 
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percolation on the square lattice, this walk is particularly simple (see figure 2). It is a 
walk from bond to neighbouring bond, with right or left turn at every step, and with 
memory: if the walk comes again to a bond it bas already visited before, then it has 
to take a turn in the same direction. On bonds not visited before (including the bond 
on which the walk bad started), the chance for left and right turns is equal. The walk 
is continued until a loop is formed, which will finally happen with probability one. 

It is easily seen that the statistics of such walks is just that of critical percolation 
hulls, except for a trivial factor taking into account the bias implied by the fact that 
the randomly chosen starting point has to belong to the hull. More precisely, the hull 
as defined above is the set of lattice sites on the interior side of any link touched by 
the walk. 

Consider now a hull walk as constructed above, and remove from it all interior 
parts by always taking the turn which follows its outermost path (see figure 2(b);  
simiiar constructions work on other ZD iatticesj. iiiis gives a waik which ioiiows 
precisely the accessible perimeter P'"'. We call it p'@. In order to get a walk (called 
pcb)) which follows Pcb), we would have in addition to remove all fjords whose entrance 
is formed by two parallel steps on the same plaquette of the original lattice (figure 2(c)). 

In order to measure their perimeters, we first constructed hulls of critical bond 
percolation clusters by walks on a square lattice of bonds as described above. In order 
to avoid any finite lattice bias, we worked on a lattice of 2500 x 2500 bonds, and 
discarded any walk moving distance > 1250 away from the centre. For the remaining 
walks we constructed the perimeters P"" and PIb). Their diameters, defined as 

R = [ ( X , , , - - X , , . ) ~ + ( Y ~ ~ , - Y ~ ~ ~ ) * ~ ' ' ~  (1) 

Fisure 2. (a) Walk generating the hull of the percolation cluster of figur: 1. (b)  The 
perimeter icbl obtained by always taking outer moves. ( e )  The perimeter P'" obtained 
by deleting in addition fjords whose entrance is formed by two neighbouring parallel steps. 
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wereused to bin the obtained perimeter lengths N. More precisely, in order to reduce 
finite-size effects, the ratios N / R 4 l 3  were binned. For perimeter P"' the total number 
of clusters obtained in this way was 1 . 8 ~  lo6, representing a sample more than two 
orders of magnitude larger than that of [lo]. 

Let us call r, = (N/R"'), the average over the ith bin. In figure 3 we show the local 
exponents 

against l / R i ,  where Ri is the centre of the ith bin. We see quite strong corrections to 
scaling, but they seem to have an exponent bigger than 1. Thus we can make a straight 
extrapolation to R = 0. Using only data with R > 100 for the extrapolation, we obtain 
D =  1.332+0.002. 
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Figure 3. Local exponents D, against the inverse average radius R,.  Th: extrapolation 
R, m gives the fractal dimension of the accessible perimeter. Triangles: P'"'; diamonds: i'"', 

We have not been able to give a good a priori reason why percolation cluster 
perimeters should be random self-avoiding loops. Notice that our truncations of 
dangling groups of dual clusters is not symmetric with respect to duality, as we do not 
truncate in a similar way the original cluster. Thus, we expect any relationship between 
SAWS and percolation perimeters to be true only in the scaling limit. 

A possible deeper relationship between percolation and self-avoiding loops which 
encompasses not only the fractal dimension could be the following. Consider a large 
domain a,, say for simplicity a square of size L x L. Place on it a loop -Yl chosen 
randomly with the only constraint that it should fit entirely into go. Since large loops 
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are more frequent, this loop will be typically of size -L. The complement Q,-Z, 
consists of two disjoint components, namely the exterior and the interior of the loop. 
We call it 9,, and we place into one of its components another random loop which 
we call S2, etc. In a recursive way we generally place a random loop Zk in one of the 
k disjoint components of the domain ak-, and call the resulting complement 9k, We 
conjecture that the loops constructed in this way are in the scaling limit perimeters of 
critical percolation clusters. 

Finally, let us discuss whether this can be extended to higher dimensions. An 
obvious conjecture would be that surfaces of critical percolation clusters are self- 
avoiding closed surfaces. This would be a very interesting result in view of the recent 
interest in self-avoiding surfaces coming mainly from non-Abelian gauge theories. An 
obvious problem with such a conjecture would be that these surfaces are topologically 
very complicated. They are in general not singly connected, and it is not clear whether 
this is the ensemble of main interest. Another problem is that at present there seems 
to be no efficient algorithms available by which such a conjecture could be tested 
numerically. 
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